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Abstract--This study investigates the effects of variations in the fugacities of oxygen and sulfur on

the partitioning of first series transition metals (V, Cr, Mn, Fe, Co, Ni, and Cu) and W among coexisting

sulfide melt, silicate melt, and olivine. Experiments were performed at I atm pressure, 1350°C, with the
fugacities of oxygen and sulfur controlled by mixing CO2, CO, and SO2 gases. Starting compositions

consisted of a CaO-MgO-AI:O3-SiO2-FeO-Na20 analog for a barred olivine chondrule from an ordinary

chondrite and a synthetic komatiite. The foJfs_ conditions ranged from log f), = -7.9 to - 10.6, with

log fs, values ranging from - 1.0 to -2.5. Our experimental results demonstrate that the f)a/fs_ dependen-

cies of sulfide melt/silicate melt partition coefficients for the first series transition metals are proportional

to their valence states. The fo2/f% dependencies for the partitioning of Fe, Co, Ni, and Cu are weaker

than predicted on the basis of their valence states. Variations in fo,./fs_ conditions have no significant

effect on olivine/melt partitioning other than those resulting from fo_-induced changes in the valence

state of a given element. The strong .foJfs_ dependence for the olivine/silicate melt partitioning of V is

attributable to a change of valence state, from 4+ to 3+, with decreasing fo:. Our experimentally

determined partition coefficients arc used to develop models for the segregation of sulfide and metal

from the silicate portion of the early Earth and the Shergottite parent body (Mars). We find that the

influence of S is not sufficient to explain the overabundance of siderophile and chalcophile elements

that remained in the mantle of the Earth following core formation. Important constraints on core formation

in Mars are provided by.our experimental determination of the partitioning of Cu between silicate and

sulfide melts. When combined with existing estimates for siderophile element abundances in the Martian
mantle and a mass balance constraint from Fe, the experiments allow a determination of the mass of

the Martian core (_ 17 to 22 wt% of the planet) and its S content (_0.4 wt%). These modeling results

indicate that Mars is depleted in S, and that its core is solid. Copyright © 1997 Elsevier Science Ltd

1. INTRODUCTION

The segregation of metallic cores from silicate mantles is

the most significant differentiation event in the evolution of

the terrestrial planets. In the Earth, for example, the inner
and outer cores combined comprise _33% of the mass of

the planet. In contrast, the extraction of basalt from the upper

mantle at mid-ocean ridges produces an oceanic crust com-

prising only _0.08% of the mass of the Earth. The absolute

and relative abundances of siderophile elements (elements

that partition strongly into metallic phases relative to sili-

cates) that remain in the silicate mantle of a planet following

core formation provide the only direct geochemical evidence

relating to the segregation process. These abundances

should, in principle, reflect equilibration between metallic
phases and mantle silicates during segregation of material
into the core.

The conditions under which core formation took place

could have had a significant effect on the present-day sidero-

phile element abundance pattern of the mantle through varia-

tions in metal/silicate partitioning. The effects of such vari-

ables as temperature and pressure on siderophile element

partitioning are beginning to be understood and quantified

(Jones and Walker, 1991 ; Murthy, 1991 ; Keppler and Ruble,
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1993; Walker et al., 1993; Capobianco and Amelin, 1994;

Hillgren et al., 1994; Thibault and Walter, 1995; Li and

Agee, 1996). In this study, we present experiments that

investigate the effect of variations in the fugacities of oxy-

gen (f%) and sulfur (fs2) on the partitioning of moderately

siderophile elements (V, Cr, Mn, Fe, Co, Ni, Cu, and W)

among coexisting olivine, silicate melt, and sulfide melt. The

experimental results are used to constrain the role of sulfide

in producing the siderophile element abundance pattern in

the upper mantle of the Earth and the conditions under which

core formation took place in the parent body of Shergottite

meteorites (Mars).

2. EXPERIMENTAL AND ANALYTICAL METHODS

Experiments were performed at 1 atm pressure in either a Pt-
wound or Deltech vertical quenching furnace fitted with a 19 mm
outer diameter fused-silica muffle tube. Fused silica was chosen to
minimize interaction with the furnace gases, but had the disadvantage

of needing to be replaced frequently. End-pieces were fabricated
from fired pyrophyllite and attached to the muffle tube using General
Electric Red RTV 106 high temperature silicone rubber adhesive

sealant. The values of f% and fs_ were controlled by mixing CO2,
CO, and SO2 gases that were fed into the furnace through a tube in
the upper pyrophyllite plug (Fig. I). The gases exited through a
tube in the lower plug and were fed into a Pyrex flask through a
silica-glass tube wrapped with heating tape, and then vented into a
fume hood. Temperature in the furnace hotspot was continuously
monitored using a Pt-PtgoRhm thennocouple calibrated against the
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Fig. 1. Schematic of the furnace configuration used to perform

the siderophile element partitioning experiments reported in this

study.

melting points of NaC1, Au, and Pd on the 1968 International Practi-
cal Temperature Scale (Biggar, 1972). The thermocouple was posi-

tioned on the outside of the muffle tube to avoid contamination by

S-rich gases, and the temperature difference between the position of

the thermocouple and the position of the sample was calibrated using

a second thermocouple.
The mixture of COa, CO, and SO: gases required for each experi-

ment was calculated by assuming that the gas behaves as an ideal

solution at high temperature and low" pressure and is given in Table
1. Expressions relating Gibbs free energy change to equilibrium

constants for independent reactions involving nine gas species (Oz,

CO, CO2, COS, CS,, S:, SO, SO:, SO3) were written using thermo-

chemical data from the JANAF tables (Chase et al., 1985). Mass

balance equations relating each element (C, O, and S) to the stable

gas species were then used to determine the gas mixture necessary

to achieve the desired combination of f,_ and fs.,. This calculation
procedure gives results that are in agreement with those determined

using the method of steepest descent, a calculation procedure based

on free energy minimization that has been used in other experimental

studies involving CO:-CO-SO: gas mixing (White et al., 1958;

Haughton el al., 1974).

Starting materials consisted of either a CaO-MgO-Al:O3-SiOz-

FeO-Na:O analog for a barred olivine chondrule from an ordinary

chondrite (Fo86 of Ehlers et al., 1992) or a synthetic Munro Town-

ship koniatiite (KOM; Composition B of Kinzler and Grove, 1985)
(Table 2) to which synthetic FeS and various combinations of John-

son-Matthey high-purity NiO, CuO, Cr:O3, Co_O4, V:Os, or WO3

were added (Table I). FeS was synthesized by melting a 2 gram

stoichiometric mixture of Fe metal sponge and S chips in an evacu-

ated silica-glass tube. The tube containing the FeS mixture was

placed in a Deltech vertical quenching furnace at 960°C; the tempera-
ture was raised gradually to 1250°C over a period of 2 h, then quickly

to 1270°C and held at that temperature for 2 h before quenching the

charge into water.

Experiments were performed by packing the sample powder into

a crucible fabricated from a single crystal of gem quality San Carlos

olivine (Fo,_.,_) following the methods described by Ehlers et al.

(1992). Olivine crucibles are preferable to containers made from

high-purity alumina because they prevent reaction between the cruci-
ble and charge during olivine-saturated melting experiments. The

crucible was fastened to the top of a silica-glass rod using 0.2 mm

diameter Pt wire and placed into the furnace through the lower end

of the muffle tube with the hotspot temperature set to 1078"C. The

lower pyrophyilite plug was then used to seal the furnace tube and

the gases were set to the desired flow rates. After the gases had been

flowing for 30 min, the sample was raised into the hotspot. A second

glass rod was placed between the benchtop and the rod holding the

sample_and the hotspot iemperature Was gradually raised to 1350°C

over a period of _60 min. At the end of each experiment the lower

glass rod was removed and the upper rod slid down, quenching
the experiment against the lower pyrophyllite plug. This method of

quenching resulted in little or no quench growth in the silicate glass,
but the sulfide melt generally consisted of a coarse intergrowth of

quench phases, a common problem in experiments containing sulfide

melts (e.g., Jones and Drake, 1983; Jones and Walker, 1991; Peach

and Mathez, 1993). Evidence for the loss of Cu from the charges

due to volatilization was found in one experiment performed at

relatively oxidizing conditions (log fo2 = -7.9; log fs_ = -2.0; gas
flow rate of 1.29 mL/s). This problem was minimized in other

experiments through the use of low gas flow rates and deep crucibles.

Experimental products were analyzed using either a 4- or 5-spec-

trometer JEOL 733 Superprobe at the Massachusetts Institute of

Technology. Analytical conditions for determination of the major

elements in all phases were an accelerating voltage of 15 kV and a

beam current of t0 nA with maximum peak counting times of 40

s. A 1 ,um spot size was used for analyses of olivine and sulfide,

while a 10 .urn spot size was used to perform glass analyses. Each

reported silicate analysis represents a mean of t0 spot analyses. On-

line data reduction was accomplished using the phi-rho-z correction

scheme. Trace elements in the silicate phases were analyzed sepa-

rately from the major elements using a beam current of 200 nA

and peak counting times ranging from 250-700 s, depending on
concentration. Elements present in the sulfide melt in trace amounts

were analyzed using beam currents of 50-200 nA and peak counting
times of 250-500 s, depending on concentration. The detection limit
for trace elements was taken to be 3 standard deviations above

background counts. Analyzing experiments containing V required

corrections for peak overlap interferences from TiK.o on VK, and V_:B

on CrK,. This was accomplished by determining the intensity of the

interfering peak on the pure oxide of the interfering element (i.e.,

TiO2 and V:O5) and then scaling the interference for a given analysis

to the concentration of the interfering element and subtracting it

from the measured intensity of the element of interest.

The olivine/silicate melt partition coefficients for Cu were deter-
mined by secondary ion mass spectrometry using the Cameca IMS

3f ion microprobe at Woods Hole Oceanographic Institution. Analy-

ses were performed using a 2 nA beam of O- ions focused to a spot

size of 15 ,urn. Positive secondary ions were collected and counted

by an electron multiplier. Molecular interferences were excluded by

energy filtering using a _+10-V energy window and a -90V offset

(Shimizu and Hart, 1982), and checked by determining the _3Cu/

'_SCu ratio for each spot. The relationships between intensity and

concentration for olivine and glass were determined using experi-
ment KOM-ls, in which the concentration of Cu in olivine is high

enough to be determined by electron microprobe.
Accurate determinations of the compositions of experimentally

produced sulfide melts were complicated by the presence of coarse

intergrowths of quench phases. This problem has been dealt with in
other studies by performing multiple broad-beam analyses (Peach

and Mathez, 1993), or by rastering the beam over large areas

(Walker et al., 1993). Our approach to this problem was to analyze

each quench phase separately, to use image analysis to determine

their relative proportions, and then to calculate a weighted mean

composition for the bulk sulfide melt. The uncertainty associated

with the quench phase proportions was estimated by performing

replicate determinations and calculating the standard deviation of

the mean for each quench phase.

3. EXPERIMENTAL RESULTS

3.1. Synthesis Experiments

Experiments were performed on a synthetic Munro Township

komatiite composition (KOM) (Table 2) to determine the parti-

tioning behavior of V, Cr, Mn, Fe, Co, Ni, Cu, and W among

coexisting olivine, sulfide melt, and ultramafic silicate melt. The

partitioning behavior of Ni was also experimentally determined for

the CaO-MgO-AI:O3-SiO:-FeO-Na:O barred olivine chondrule ana-
log composition (Fo86; Table 2) studied by Ehlers et al. (1992).

The komatiite provides a reasonable analog for the type of high-
degree partial melt that might be present if the silicate portion of a
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TABLE1.Experimentalconditionsandphaseassemblagesforpartitioningexperiments.
Durafon GasFlowRates (mL/s)

Experiment (hr) log fo2 log fs2 CO 2 : CO : SO 2 Run Products

Ni-Doped Experiments

Fo86-8s I 48 -7.9 -2.5 1.53 : 0.41 : 0.11 GI, Oliv, SIf
Fo86-5s I 49 -7.9 -2.0 0.95 : 0.30 : 0.15 GI, Oliv, Slf
Fo86-9sl 48 -8.0 -1.5 0.51 : 0.30 : 0.18 GI, Oliv, Slf, PrEn
Fo86-15s I 49 -8.6 -1.5 0.39 : 0.39 : 0.08 G1, Oliv, Slf, PrEn
Fo86-14s I 48 -9.4 -1.5 0.27 : 0.71 : 0.08 G1, Oliv, Slf, PrEn
Fo86-10s I 48 -10.3 -1,5 0.08 : 1.44 : 0.12 G1, Oliv, SIf, PrEn

Ni-Cr-Cu-Doped Experiments

KOM-Is 2 48 -7.9 -1.8 0.46 : 0.17 : 0.10 GI, Oliv, Sp, SIf
KOM-6s 2 48 -8.0 -1.5 0.51 : 0.30 : 0.18 GI, Oliv, Sp, SIf
KOM-15s 3 72 -8.8 -1.5 0.50 : 0.61 : 0.10 GI, Oily, Sp, SIf
KOM-4s 2 48 -9.2 -1.0 0.00 : 0.77 : 0.20 GI, Oliv, Sp 10, SIf
KOM-3s 2 48 -10.3 -1.5 0.08 : 1.44 : 0.12 G1, Oily, Sp I°, SIf
KOM-10s 4 72 -10.3 -1.5 0.10 : 1.66 : 0.13 G1, Oliv, Sp I°, SIf
KOM-26s 4.9 72 -7.9 -2.0 0.87 : 0.28 : 0.14

72 -10.3 -1.5 0.10 : 1.66 : 0.13 G1, Oliv, Sp I°, SIf
KOM-9s 4 72 -10.6 -1.5 0.00 : 1.28 : 0.10 G1, Oliv, Sp I°, sir

Ni-Co-W-Doped Experiments

KOM-16s 5 72 -7.9 -1.8 0.46 : 0.17 : 0.10 G1, Oliv, Sp, Slf
KOM-20s 5 72 -8.0 -1.5 0.51 : 0.30 : 0.18 G1, Oliv, Sp, SIf
KOM-13s 6 72 -9.4 -1.5 0.27 : 0.71 : 0.08 GI, Oliv, Sp I°, Slf, (Tngst?)
KOM-1 ls _ 72 -10.3 -1.5 0.08 : 1.44 : 0.12 G1, Oily, Sp I°, sir, Tngst

Ni-V-Doped Experiments

KOM-19s 7 72 -7.9 -1.8 0.46 : 0.17 : 0.10 G1, Oliv, Sp, SIf
KOM-23s 7 74 -8.0 -1.5 0.51 : 0.30 : 0.18 G1, Oliv, Sp, Slf
KOM-22s 7 90 -9.1 -1.5 0.44 : 0.78 : 0.10 G1, Oliv, Sp i°, SIf
KOM-18s s 72 -10.3 -1.5 0.08 : 1.44 : 0.12 G1, Oliv, Sp 1°, SIf

Abbreviations: G1
tungstate mineral.
1Doped with 1.5 wt% NiO;
2Doped with 1.5 wt% NiO;
3Doped with 1.5 wt% NiO;
4Doped with 2.5 wt% NiO;

5Doped with 1.5 wt% NiO;
6Doped with 2.5 wt% NiO;

7Doped with 1.5 wt% NiO;

8Doped with 3.5 wt% NiO;
9Revemal experiment.

= glass, Oliv = olivine; Slf = sulfide; PrEn = protocnstatite;

1.5 wt% FeS.

1.5 wt% FeS; 1.0 wt% CuO.
1.5 wt% FeS; 1.0 wt% CuO, 1 wt% Cr203.
1.5 wt% FeS; 2.0 wt% CuO, 1 wt% Cr203.

1.5 wt% FeS; 1.0 wt% Co304, 1 wt% WO 3.
1.5 wt% FeS; 1.0 wt% Co304, 1 wt% WO 3.

1.5 wt% FeS; 1 wt% V20 s.
1.5 wt% FeS; 1 wt% V20 s.

I°Spinel occurs within sulfide melt.

Sp = spinel; Tngst =
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terrestrial planet were largely molten (e.g., Nisbet and Walker,

1982). The Fo86 experiments allow the partitioning behavior of Ni

in a S-bearing system to be directly compared with the results of

Ehlers eta]. (1992), who performed Ni-partitioning experiments in

a S-free system using the Fo86 composition. Experimental condi-

tions were log fo2 values ranging from -7.9 ( 1 log unit more reduced

than the fayalite-magnetite-quartz, FMQ, oxygen buffer) to -10.6

(the iron-quartz-fayalite, IQF, oxygen buffer) and Tog fs_ values

from - 1.0 to -2.5 (Table 1 ; Fig. 2). At 1350°C both starting compo-

sitions produce silicate melts saturated with an immiscible sulfide

melt and olivine. In addition, the KOM experiments crystallize

chromian spinel, while protoenstatite occurs in the Fo86 experiments

performed at low fo2/fs2 ratio conditions (Table 1 ). The KOM ex-
periments containing W that were performed at reducing conditions

also contain a tungstate mineral.

Olivine grains in the KOM experiments are subhedral to euhedral
in morphology, tend to be elongate, and are up to _600 jura in their

long dimension (Fig. 3). Spinels occur as small (_5-20 /Jm),

equant, euhedral grains. In the high fo,/fs2 ratio experiments spinel

is present in the silicate melt and included in olivine grains, while

in the low fo_lfs_ ratio experiments it occurs exclusively within the

sulfide melt (Table I ). The tungstate mineral occurs as small (_5

/_m), spheroidal grains within the sulfide melt. The morphology of

the sulfide melt changes dramatically with varying fo_/fs: experi-

mental conditions. In the high .fo_/fs_ ratio experiments, the sulfide

melt is present as small (_10 /Jm) to moderate size (_250 urn)

spheres throughout the upper portion of the charge. In the low

foJfs_ ratio experiments the sulfide melt forms large ( _ 1,500 #m),
lens-shaped bodies that commonly occur at the silicate melt/gas

interface (Fig. 3).

TABLE 2. Compositions (wt%) of silicate starting materials.

SiO 2 TiO 2 AI203 Cr203 FeO MnO MgO CaO Na20 K20 NiO Total

Fo86 47.94 -- 7.13 -- 8.94 -- 31.40 1.39 3.19 -- -- 99.99
KOM 50.14 0.33 10.55 0.41 10.98 0.36 I7.21 9.49 0.37 0.07 0.09 100.00
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Fig. 2. Plot of log fo_ versus log fs_ showing conditions at which

siderophile element partitioning experiments were performed (filled

circles). Diagonal solid lines represent constant log f_/2 _ log

f ,_'_ values. Vertical dashed lines represent the iron-quartz-fayalite
(IQF), iron-wtistite (IW), and fayalite-magnetite-quartz (FMQ) ox-

ygen buffers at 1350°C. Horizontal dashed line represents the iron-

iron sulfide (FeFeS) sulfur buffer at 1350°C.

Olivine grains in the Fo86 experiments are subhedral to euhedral

in morphology, and tend to be equant. The largest grains are typically

40-60 ,um in diameter. Sulfide occurs as spherical to sub-spherical

blebs, up to 1 t0 #m in diameter, distributed throughout the silicate

melt. Pyroxene grains are subhedral to euhedral and tend to be

elongate. The largest grains are up to _700 um in length. In the

experiments where olivine and pyroxene coexist, there is a distinct
trend of increasing protoenstalite and decreasing olivine abundance

with decreasing fo,/fs,, ratio. There is also a decrease in the total

number of crystals with decreasing fo_/fs_ ratio.

The composition of the silicate melt ','aries systematically with

changing f%/fs2 ratio for both starting compositions. The abun-
dances of FeO, NiO, CuO, and CoO all decrease with decreasing

foJfs,, ratio, while the abundance of dissolved S increases (Tables
3-6). The decrease in FeO produces a corresponding increase in

the concentration of the other major elements. This compositional

variation leads to low-Ca pyroxene saturation in the Fo86 experi-

ments performed at low fo,.lfs,_ ratio conditions.

The composition of the sulfide melt also varies as the fo:/fs_ ratio

decreases. The sulfide melt in the high fo,.lfs, ratio experiments is

Ni-rich, while in the low foJfs, experiments it is Fe-rich (Table 7;

Fig. 4). The concentrations of V, Cr, and Mn in the sulfide melt

increase with decreasing fo./fs: ratio. In contrast with the other first
series transition metals, the abundances of Cu and Co do not vary

in a systematic way. In the case of Cu, this may be related to
the need to use higher doping levels to obtain accurate microprobe

analyses of experiments performed at low fo:lfs, ratio conditions

(see footnotes in Table 1 for the doping levels used in each experi-

ment). The sulfur contents of the sulfide melts range from 28.8 to

38.3 wt%, and increase systematically with decreasing foJfs, ratio

(Table 7).

The weight ratio sulfide melt/silicate melt partition coefficients

(Dr_mae r*lelasili_aiorael, _ ]_w, tVk M in sulfide melt]/[wt% M in silicate

melt]') for all of the elements studied (with the possible exception

of W) are strong functions of the foJfs: ratio (Tables 8-9; Fig.

5). The weight ratio olivine/silicate partition coefficients
(oOlli,inetSilkale Mell = [wtCk M in olivine]/[wt% M in silicate melt])

for Ni, Mn, Cr, and Cu do not show a systematic variation with

changing fi_/fs,_ conditions, while those for V and W increase with

decreasing fo,_/f_, ratio (Table 10; Fig. 6). The Co partition coeffi-
cients are similar to those determined in a S-free systems by Ehlers

et aL (1992) for the Fo86 composition.

Olivine/silicate melt partition coefficients for Ni are within 2
standard deviations of the values predicted by the model of Kinzler

et al. (1990) in the experiments performed at conditions more oxidiz-

ing than the iron-wiJstite solid oxygen buffer (IW), as is the case

in the S-free system (Ehlers et al., 1992). The olivine/silicate melt

partition coefficient in the 1=:o86 experiment performed at conditions

slightly more reducing than IW is 4.0 _+ 0.4, significantly lower than

the value predicted on the basis of the compositions of the coexisting

olivine and melt (7.1 +_ 0.9), but similar to the values reported by

Ehlers et al. (1992) at comparable fo, conditions.

3.2. Approach to Equilibrium

The approach to equilibrium represented by our experiments was

determined through (1) reproducibility of partition coefficients in

different experiments performed at the same conditions, (2) compar-

ison of the olivine/melt K_ "_g for olivine that crystallized directly

from the melt with that for the olivine crucible adjacent to the melt,

and (3) a reversal experiment.

Multiple experiments were carried out at log fo_ = -7.9, log

fs_ = - 1.8 (KOM-ls; -16s; -19s), at log .fo_ = -8.0, log fs: = - 1.5

(KOM-6s; -20s; -23s), and at log fo, = -10.9, log fs_ = -I.5

(KOM-3s; -10s; -1 Is; -18s) (Table 1 )+ The sulfide melt/silicate

melt partition coefficients for Ni measured in KOM-Is (540 - 10)

and KOM-16s (510 -+ 10) overlap at the 2o- level, but that measured
in KOM-19s (410 -+ 20) is low. This apparent discrepancy may

reflect an underestimation of the uncertainty associated with the

image analysis procedure used to determine the proportions of the

quench phases. There is good agreement among the sulfide melt/

silicate melt partition coefficients for Ni (550 _+_t0; 580 _+ 30; 550

_ 20) and Mn (0.06 +_ 0.03; 0.07 +__0.01) measured at log fo_

= -8.0, log f% = -I.5. The same is true in the log fo_ = 10.3,

log f% = - 1.5 experiments for Ni (3600 _+ 200; 4400 _+_400; 3800
_+ 400). The sulfide melt/silicate melt partition coefficients for Mn

in experiments KOM-10s (1.07 + 0.05), KOM-I Is (1.09 _+_0.03),

and KOM-I8s (0.94 _ 0.04) are similar, but the Mn partition coef-

ficient determined from KOM-3s ( 1.49 _ 0.04) is high. The sulfide

melt/silicate melt partition coefficients for Cr agree in KOM-10s
(4.8 ___0.2) and KOM-18s (4.9 _+ 0.2). There is also agreement

between KOM-3s (7.2 _+ 0.3) and KOM-I ls (6.3 ___0.5). Although

the pairs of partition coefficients are similar, they do not overlap at
the 20- level.

Equilibration of the crucible with the melt is an important prereq-

uisite for equilibration of the entire charge. Table 11 demonstrates

that there is good agreement between the compositions of the olivine

Fig. 3. Backscattered electron image showing a cross section

through a siderophile element partitioning experiment performed at

fo_ conditions near IW. Co-existing phases are silicate melt, sulfide
melt, and olivine. Experiment was performed at 1 atm, 1350°C, in

a crucible fabricated from San Carlos olivine. Scale bar is 1(3.00/lm.
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TABLE 3. Electron microprobe analyses of silicate phases from experiments performed on Ni-doped Fo86 starting composition.

1833

Experiment Phase SiO z AI203 FeO* MgO CaO Na20 NiO S Total

Fo86-Ss GI 60.9(8) 11.3(2) 9.1(4) 13,5(7) 2.5(1) 2.4(2) 0.130(9) 0.031(3) 99.86
Oliv 40.5(4) 0.05(2) 9.7(2) 49.2(5) 0.04(1) -- 0.97(4) -- 100.46

Fo86-5s GI 61.6(3) 11.7(1) 7.9(2) 13.2(2) 2.34(6) 3.2(3) 0,116(3) 0.028(I) 100.08
Oliv 40.7(3) 0.08(2) 9.5(1) 49.5(3) 0.04(2) -- 0.84(2) -- 100.66

Fo86-9s GI 60.8(4) 11.5(1) 8.6(1) 14.6(1) 2.32(3) 2.5(1) 0.091(7) 0.041(4) 100.45
Oliv 40.5(2) 0.1(2) 9.7(I) 49.8(5) 0.05(2) -- 0.59(2) -- 100.74

Fo86-15s GI 59.5(3) 13.2(2) 8.2(2) 14.4(I) 2.62(6) 2.76(6) 0.040(4) 0.047(53 100.77
Oliv 40.7(3) 0.03(1) 8.9(1) 50.6(5) 0.05(1) -- 0.28(2) -- 100.56

Fo86-14s GI 59.6(2) 14.9(1) 6.8(1) 13.6(I) 3.1(1) 2.61(7) 0.017(2) 0.060(1) 100.69
Oliv 41.3(3) 0.04(2) 7.9(1) 51.1(4) 0.05(1) -- 0.120(53 -- 100.51

Fo86-10s GI 59.1(7) 16.5(2) 3.2(2) 16.0(4) 3.2(1) 2.3(1) 0.007(2) 0.080(2) 100.39
Oliv 41.8(3) 0.07(1) 3.68(7) 54,9(4) 0.06(1) -- 0.028(3) -- 100.54

Notes: Units in parentheses represent 1 standard deviation of least units cited on the basis of replicate analyses; thus, 60.9(8)
should be read as 60.9-i"0.8. Abbreviations as in Table 1.

that crystallized from the komatiite melt and the olivine crucible

within a few /_m of the silicate melt. This indicates that although

Fe/Mg exchange was necessary for the crucible to achieve equilib-

rium with the silicate melt over the range of fo:/fs2 conditions inves-

tigated, a close approach to equilibrium was achieved during each

experiment.
A reversal of equilibrium was attempted by performing an experi-

ment at log fo_ = 7.9, log fs: = - 1.5 for 72 h, then changing the

gas flow rates to achieve log ,fo_ = -10.3, log f% = -1,5 and
continuing the experiment for an additional 72 h. The run products

from this experiment consist of glass, olivine, sulfide, and spinel.

The abundance and morphology of the phases are identical to those

found in synthesis experiments, with the sole exception of the pres-

ence of spinel inclusions in some of the olivine grains. The presence

of these inclusions is an indication that their host olivine grew at

the initial conditions of the experiment, during which spinel occurred
in the silicate melt and as inclusions in olivine grains. Analyses of

the cores of these grains (Fo_4_+02), which are 1 I0 to 145 pm in
diameter, are in good agreement with the composition of the rims

and the crucible adjacent to the glass (Table 11 ), indicating reequili-

bration. The sulfide melt/silicate melt partition coefficients for Cr

(4.8 _+ 0.2 versus 4.9 _+0,2), Mn ( 1.07 _+0.05 versus 0.99 _+0.05),

and Cu (900 _+ 100 versus 670 _ 70) in KOM-10s and the reversal

experiment overlap at the 2a level. The partition coefficient for Ni

in the reversal experiment is low (2400 _+_300) relative to that in

KOM-10s (3600 _+ 200), but they overlap at 2.4m Once again, this

may reflect an underestimation of the uncertainty associated with

determining the proportions of the sulfide quench phases using image

analysis.

4. DISCUSSION

4.1. Effect of Variable fo_ and fs2 on Siderophile

Element Partitioning

Explicit dependence of sulfide melt/silicate melt parti-

tioning on fo_ and fs_ is governed by an exchange reaction

of the form:

MxO)Silicat¢ M¢,, + Z s_a, = MxSSUmdCM¢ n + Y 0_"
2 2

(i)

where M is a metal cation and X, Y, and Z are stoichiometric

coefficients. An increase in fs2 at a constant fo2 value (i.e.,

a decrease in the fo:/fs2 ratio) will drive this reaction to the

product side, increasing the sulfide melt/silicate melt parti-

tion coefficient, while an increase in fo2 at a constant fs2

will favor the reactants, leading to a decrease in the sulfide

melt/silicate melt partition coefficient (e.g., Peach and Ma-

thez, 1993). This relationship can be quantified by rewriting

Eqn. 1 in terms of a single metal cation:

SilicaleNleh __Z S_, ` = MS#xS°ma_M_" + __Y O_._
MOra. + 2X 2X

(2)

TABLE 4. Electron microprobe analyses of silicate phases from experiments performed on KOM starting composition doped with Cr, Ni, and Cu.

Experiment Phase SiO 2 TiO a A1203 Cr203 FeO MnO MgO CaO Na20 K20 NiO CuO S Total

KOM-ls G1 51.4(3) 0.38(2)10.9(1) 0.246(3) 11.2(2) 0314(2)15.2(1) 10.0(1) 0.23(4) 0.06(1)0.086(2) 0.073(3) 0.065(2) 100.15
Oliv 39.7(3) -- 0.07(I) 0.158(3) 10.89(9) 0.266(4) 47.8(3) 0.23(2) -- -- 0.58(I) 0.007(2) -- 99.69

KOM-6s GI 51.5(1) 0.35(2) 10.53(8) 0.371(3) 11.2(1) 0,296(2) 17.19(9) 9.33(9) 0.12(2) 0.02(1) 0.096(2) 0.026(2) 0.081(2) 101.11
Oliv 40.3(I) -- 0.07(3) 0.22(1) 9.7(1) 0.225(2)49.2(2) 0.23(1) -- -- 0.551(3) -- -- 100.50

KOM-15s GI 51.5(2) 0.34(2)10.47(5) 0.530(3) 9.4(1) 0,300(4)17.65(6) 9.32(6) 0.08(1) 0.01((3)0.024(2) 0.011(2) 0,131(I) 99.77
Oliv 40.4(2) -- 0.12(2) 0.324(5) 8.44(7) 0.214(3) 49.8(3) 0.21(1) -- -- 0.134(5) -- -- 99.64

KOM-4s GI 53.6(1) 0.35(2)11.0(1) 0.271(1) 6.8(2) 01322(4)IK4(I) 9.84(5) 0.11(2) 0.01(1)0.010(I) 0.011(2) 0.140(2) 100.86
Oliv 41.3(2) -- 0.04(2) 0.178(5) 6.1(3) 0.230(2) 52.5(4) 0.21(1) -- -- 0.062(4) -- -- 100.62

KOM-3s GI 55.5(2) 0.36(2) 11.4(I) 0.222(1) 3.72(6) 0,311(3) 18.38(6) 10.3(1) 0.17(2) 0.03(I) -- 0.0086(5) _0.154(3) 100.56
Oliv 41.9(4) -- 0.03(I) 0.140(1) 3.55(6) 0,220(2) 54.6(7) 0.22(1) -- -- 0.017(I) -- 100.68

KOM-10s GI 55,5(2) 0.33(1)11.22(6) 0.672(3) 4.2(1) 0.289(2)18.3(1) 9.77(8) 0,05(1) 0.00 0.0043(8) 0.010(2) 0.140(3) 100.49
Oliv 41.6(2) -- 0.08(2) 0.429(4) 3.81(7) 0.200(2) 54.4(2) 0.19(1) -- -- 0.030(6) -- -- 100.74

KOM-26s G1 55.0(1) 0.34(2)11.54(8) 0.716(2) 4.09(8)0.301(2)18.41(9) 9.9(I) 0.07(2) 0.01(0)0.007(2) 0.012(2) 0.133(5) 100.53
Oliv 41,7(3) -- 0.07(2) 0.458(5) 3.70(9) 0.205(2) 54.4(3) 0.22(2) -- -- 0.045(7) -- -- 100.80

KOM-9s GI 56.1(2) 0.34(2)11.23(4) 0.561(3) 2.94(5)0.263(2)19.3(1) 9.92(4) 0.08(2) 0.01(0) -- 0.012(2) 0.151(2) 100.91
Oliv 42.1(2) -- 0.07(2) 0.354(3) 2.54(5) 0,179(2) 55.7(2) 0.21(1) -- -- 0.017(2) -- -- 101.17

Notes: Units in parentheses as in Table 2. Abbreviations as in Table 1.
_Determined by ion microprobe.
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TABLE 5. Electronmicroprobe analyses of silicate phases from experiments on KOM starting composition doped with Co, Ni, and W.

Experiment Phase SiO2 TiO2 AI203 Cr203 FeO MnO MgO CaO Na20 K20 NiO CoO WO3 S Total

KOM- 16s

KOM-20s

KOM- 13s

KOM-Ils

G1 49.1(2) 0.35(2) 10.59(7) 0.226(5)11.7(2) 0.279(5) 16.0(1) 9.03(4)0.13(2) 0.02(1) 0.121(3) 0.48(2) 1.03(2) 0.064(2) 99.12
Oliv 39.8(2) -- 0.07(0) 0.13(1) 11.2(2) 0.191(9) 46.2(2) 0.22(2) -- -- 0.67(9) 0.87(8) 0.016(3) -- 99.37
G1 50.4(1) 0.35(2) 10.67(8) 0.254(2)11.1(1) 0.297(3) 16.9(1) 9.23(9)0.05(2) 0.00(I) 0.079(2) 0.435(2) 0.973(8)0.08(1) 100.82

Oliv 40.5(2) -- 0.09(1) 0.151(2) 9.68(9)0.217(4) 49.0(2) 0.22(1) -- -- 0.45(I) 0.85(1) 0.052(5) -- 101.21
GI 51.9(3) 0.34(2) 10.6(1) 0.213(3) 8.2(2) 0.286(2) 17.71(8)9.35(6)0.05(I) 0.01(1) 0.018(2) 0.136(3) 0.71(2) 0.136(9) 99.66

Oliv 41.0(2) -- 0.04(2) 0.134(3) 7.6(1) 0.205(4) 50.9(2) 0.20(1) -- -- 0.097(2) 0.263(5) 0.028(5) -- 100.47
G1 55.0(1) 0.37(2) 11.1(3) 0.163(1) 3.7(1) 0.285(2) 18.7(1) 9.8(1) 0.04(2) 0.01(1) 0.0034(9) 0.0357(6) 0.669(7)0.141(2) 100.02

Oliv 41.9(2) -- 0.03(2) 0.107(2) 3.39(6)0.200(2) 54.5(2) 0.19(2) -- -- 0.024(3) 0.070(2) 0.036(6) -- 100.45

Notes: Units in parentheses as in Table 2. Abbreviations as in Table 1.

The equilibrium constant for this reaction is given by:

Sulfide Y I 2 X
a MSz,xf 02

geq (/Silicale FZt2X (3)
MO),tX .} S 2

Taking logarithms and rearranging gives:

Sulfide

log amsz:x _ logfZ_2 x _ logf_:2 x + log K_q (4)
l Silicate --

t';, MO i,:x

If the ratio of the activity coefficients for the M species in

the silicate and sulfide melts remains constant over the range

of fo2/fs, conditions of interest, it can be combined with the

equilibrium constant and a molar-to-weight-ratio conversion

factor to form a single constant term. Then, if Y = Z, Eqn.

4 can be simplified to give the expression:

Y [logf_,2 ,z._=-- - logfo_ ] + C (5)log D_v_IfideMelt/S]ficateMelt g

Therefore, if all of the appropriate assumptions are met, a lin-

ear relationship will exist between log DS_ m_l_M_Ulsillc:,,_r,_],

and log :1:2 _ log ffo:: with a slope that is equal to thed S,

anion-to-cation ratio for the oxide or sulfide species of inter_

est. The strength of the fo,/fs_, dependence for a given ele-

ment should be proportional to its valence state.

Figure 5 is a plot of log DS_'rodem,._,:s_Ti_,_r,_eT_versus log

f_zz _ log .[_zf showing the partition coefficients determined

from our experiments on the synthetic komatiite composi-

tion. The partition coefficient for W has been omitted be-

cause it could only be determined for a single experiment.

The logarithms of the partition coefficients for all of the

elements studied are strong linear functions of log f._:2

log ,:2- fo_, as expected. The slopes of the best-fit regression

lines steepen from 0.38 _+ 0.06 for Cu to 1.37 _+ 0.08 for Cr

(Table 8). The elements Fe, Co, Ni, and Cu are chalcophile

(D_ IlfidcMclt/silicaw reel' > 1.0) at all of the fo2/fs= conditions

investigated. The elements V, Cr, and Mn go from being

incompatible in the sulfide melt at high foJfs, ratios to being

compatible at low fo_./fs, conditions. Due to the difference

in their slopes, the partition coefficients for Mn and V reach

a crossover point at log f_/7 _ - log f_Jff = 4.35, where V

goes from being less compatible than Mn to being more

compatible (Fig. 5). There is a similar crossover involving

Fe and Cr at log f_s/22 - log f_;2 = 5.04.

The relationship between the fo,/fs_ dependence of sulfide

melt/silicate melt partitioning and anion-to-cation ratio

means that any change in the valence state of an element

will complicate the linear relationship given by Eqn. 5. The

advantage of partitioning among three coexisting phases is

that any change in the valence state of an element with

varying fo:/fs_ conditions inferred from sulfide melt/silicate

melt partitioning should also be reflected in the olivine/

silicate melt partitioning data, providing an independent

check. Unlike sulfide melt/silicate melt partitioning, olivine/

silicate melt partitioning of moderately siderophile elements

is not governed by an exchange reaction involving S and,

therefore, should be largely insensitive to variations in fs,.

A significant and systematic change in olivine/silicate melt

partitioning with varying fo2/fs2 conditions should, there-

fore, indicate a change in valence state related to changing

fo_ conditions. The olivine/silicate melt partition coefficients

for Cr, Mn, Ni, Co, and Cu do not vary systematically with

changing ._)_./f% conditions. The small amount of variability

that does exist may be attributable to changes in the composi-

tions of the coexisting olivine and silicate melt (e.g., Hart

and Davis, 1978; Kinzler et al., 1990; Hirschmann and

Ghiorso, 1994). Of these four elements, Cr and Mn have

TABLE6. Electron microprobe analyses of silicate phases from experimentsperformed on KOM starting composition doped withV and Ni.

Experiment Phase SiO 2 TiO2 AI203 Cr20 3 FeO MnO MgO CaO Na20 K20 NiO V20 5 S Total

KOM-t9s G1 50.0(2) 0.346(3) 10.6(I) 0.240(2) 11.4(2) 0.288(3) 16.6(1) 9.37(7) 0.14(3) 0.03(1) 0.176(3) 1.00(1) 0.062(3) 100.25
Oliv 40.1(3) 0.005(I) 0.07(0) 0.148(3) 10.0(2) 0.212(2)47.9(3) 0.24(2) -- -- 1.05(2) 0.096(3) -- 99.82

KOM-23s G1 49.6(2) 0.347(3) 10.64(9) 0.250(2) 11.9(2) 0.293(3) 17.2(1) 8.81(7) 0.15(2) 0.02(1) 0.095(3) 1.048(5) 0.101(6) 100.45
Oliv 40.4(2) 0.004(1) 0.06(2) 0.145(2) 10.2(1) 0.217(2)48.7(2) 0.22(2) -- -- 0.52(2) 0.104(2) -- 100.57

KOM-22s GI 51.3(2) 0.356(4) 10.7(1) 0.247(6) 9.9(2) 0.303(5) 17.9(1) 9.17(6) 0.06(1) 0.01(1) 0.027(5) 0.99(1) 0.145(3) 101.11
Oliv 40.8(2) 0.0047(7) 0.07(2) 0.147(1) 8.9(1) 0.216(3) 50.4(2) 0.21(1) -- -- 0.152(4) 0.157(2) -- 101.06

KOM-tSs GI 55.0()) 0.367(2)11.i5(8) 0.162(2) 3.87(7)0.290(2)18.64(8) 9.9(1) 0.09(2) 0.02(1)0.006(1) 0.811(5) 0.153(1) 100.45
Oliv 41.6(3) 0.0062(8) 0.06(2) 0.105(2) 3.4(1) 0.205(2) 54.3(2) 0.19(2) -- -- 0.027(2) 0.276(1) -- 100.17

Notes: Units in parenthesesas in Table 2. Abbreviations as in Table I.
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TABLE 7. Electron microprobe analyses of experimentally-produced sulfide melts.
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Experiment Fe Ni Cu Cr Mn Co W V S Total

Ni-Doped Experiments
Fo86-8sl 13.3(3) 58.6(3) ......
Fo86-5s 14.9(3) 56.3(8) ......
Fo86-9s 21.9(6) 46.5(6) ......
Fo86-15s 42.2(12) 24.0(9) ......
Fo86-14s 43.9(5) 21.8(4) ......
Fo86-10s 1 50.7(8) 11.2(6) ......

Ni-Cr-Cu-Doped Experiments
KOM-ls 19.9(2) 36.4(2) 14.8(2) __2 2 __ __ __
KOM-6s 20.9(5) 41.6(7) 6.5(I) 0.034(8) 0.013(8) -- -- --
KOM-15s 36.7(7) 21.2(6) 4.8(2) 0.14(5) 0.060(6) -- -- --
KOM-4s 44.6(6) 11.2(5) 6.1(3) 0.4(1) 0.17(I) -- -- --
KOM-3s 51.0(3) 7.9(2) 6.5(3) 1.1(1) 0.36(I) -- -- --
KOM-10s 43.3(5) 12.1(3) 6.8(3) 2.2(2) 0.24(1) -- -- --
KOM-26s 42.5(7) 13.2(4) 6.6(4) 2.4(3) 0.23(1) -- -- --
KOM-9s 43.1(6) 10.0(2) 9.3(3) 2.6(2) 0.37(3) -- -- --

Ni-Co-W-Doped Experiments
KOM-16s 13.9(4) 48.5(4) -- _3 _3 6.7(1) _2 _
KOM-20s 23.5(3) 36.0(5) -- _2 2 8.3(2) _2 _
KOM-13 36.6(4) 22.1(4) -- 0.26(3) 0.067(9) 6.6(1) 2 _
KOM-I ls 48.6(6) 11.7(3) -- 0.7(2) 0.24(1) 4.6(1) 0.06(1) --

Ni-V-DoI_ Experiments
KOM-19s 14.0(3) 56.4(3) -- __3 3 __ __
KOM-23s 25.9(8) 4 I. 1(9) -- 2 0.015(6) -- --
KOM-22s 39.9(7) 24.8(6) -- 0.18(4) 0.060(4) -- --
KOM-18s 47.5(3) 17.7(3) -- 0.54(6) 0.21(1) -- --

28.8(2) 100.7
29.6(2) 100.8
31.3(1) 99.7
34.7(3) 100.9
33.9(3) 99.6
38.3(5) 100.2

30.0(1) 101.10
31.7(3) 100.75
36.6(1) 99.50
36.8(2) 99.27
34.3(2) 101.16
34.9(2) 99.54
34.9(2) 99.83
34.1 (4) 99.47

30.1(2) 99.20
33.0(3) 100.80
34.7(2) 100.33
34.7(2) 100.60

0.014(I) 30.4(3) 100.81
0.013(1) 33.3(4) 100.33
0.10(2) 35.9(2) 100.94
0.6(2) 34.4(2) 100.95

Notes: Units in parentheses as in Table 2. Abbreviations as in Table 1.
ISulfide melt quenched to a glass.
_oncentration is at or below detection limit.
3Not determined.

log D_ 1nde Melt/Silicate Melt versus log f_/2 _ log f_'] slopes that

are consistent with their probable valence states (3+ and

2+, respectively; Table 8).

The Cr result is especially significant. The behavior of Cr

in S-free systems has been investigated in studies of both

terrestrial and lunar basalt compositions (Akella et al., 1976;

Huebner et al., 1976; Schreiber and Haskin, 1976; Barnes,

1986; Murck and Campbell, 1986; Seifert and Ringwood,

1988; Roeder and Reynolds, 1991; Mikouchi et al., 1994).

One of the fundamental observations to come out of these

investigations is that the solubility of Cr in spinel-saturated

silicate melts varies systematically with temperature, melt

Ni

Sulfide Melt

/ \ Compositions

/ _ (Molar)

_-.._NlaS 2

/

_atar_

Mal_z

Fig. 4. Ternary plot of Fe-Ni-S system comparing compositions

of sulfide melts from Ni partitioning experiments performed on the

Fo86 starting composition (filled circles) with those from the experi-
mental studies of Rajamani and Naldrett (1978) and Peach and

Mathez (1993). Shown for reference are the FeS-NiS and FeS-Ni3Sz

joins.

composition, and fo2. Although this effect has been attrib-

uted primarily to variations in the Cr2+/Cr 3÷ ratio of the

silicate melt with changing conditions, the valence state of

Cr as a function of fo2 has only been directly measured in

an Fe-free system (Schreiber and Haski n, 1976 ). Our experi-

mental results are consistent with Cr 3+ being the dominant

species at 1350°C to conditions as reducing as the IQF oxy-

gen buffer.

There are at least three lines of evidence that support a

low Cr_'÷/Cr 3÷ ratio in our silicate melts. The first, men-

tioned above, is that the slope of log DS'_ _ndCMe":s_"_"'_ r,_,

versus log f_/22 - log f_/_ (1.37 _+ 0.16) is within 2a of

the value expected for Cr 3÷ (1.50). Although some percent-

age (_25%) of the total Cr could be present as Cr 2÷, none

is required. For comparison, Schreiber and Haskin (1976)

reported 80% of the total Cr in their silicate melts to be

divalent in simple system (CaO-MgO-AIzO3-SiO2) experi-

ments performed at 1500-1550°C and fo2 conditions near

IQF. The second important observation is that the olivine/

silicate melt partition coefficient for Cr measured in our

experiments (0.62 _+ 0.03) does not vary systematically with

decreasing fo:, as might be expected if the Cr_+/Cr 3÷ ratio

were changing. A significant increase in the Cr2+lCr _+ ratio

of the silicate melt with decreasing fo._ should result in an

increase in the olivine/silicate melt partition coefficient

(Schreiber and Haskin, 1976). Mikouchi et al. (1994) also

reported a nearly constant olivine/silicate melt partition co-

efficient for Cr in 1 atm gas-mixing experiments performed

at 1225 and 1400°C, with fo2 conditions ranging from 4 log

units above to 2 log units below the IW buffer. One caveat to

this observation comes from preliminary experiments which
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TABLE 8. Regression parameters for logarithm of sulfide melt/silicate melt partition coefficient versus
one-half the logarithm of the sulfur fugacityloxygen fugacity ratio.

log D Sullide/Silicete 1 fs 2= m log + b

2 fo2

Number of Calculated Possible

Element Expts. m b r2 Valence Valence

Weight Ratio Partition Coefficients

V 4 1.36(17) -5.9(6) 0.9742 2.80 + 3+-4+
Cr 10 1.37(8) -5.30) 0.9733 2.74+ 2+-3÷
Mn I 1 1.09(6) -4.7(2) 0.9737 2.18+ 2+
Fe 15 0.68(3) - 1.82(11) 0.9761 1.36* 2*-3*
Co 4 0.69(5) -0.88(20) 0.9878 1.38 + 2 +
Ni 13 0.65(4) 0.6,t(15) 0.9570 1.30 + 2 +
Cu 7 0.38(3) 1.27(10) 0.9768 0.76 + 1+-2"

Molar Ratio Partition Coefficients

V 4 1.36(16) -5.6(6) 0.9728 2.80+ 3+-4+
Cr I0 1.38(8) -5.0(3) 0.9753 2.76* 2+-3+
Mn 11 1.09(6) -4.4(2) 0.9744 2.18 + 2 +
Fe 15 0.68(3) -1.50(11) 0,9753 1.36" 2+-3+
Co 4 0.69(6) -0.55(22) 0.9859 1.38*" 2+
Ni 13 0.65(4) 0.97(16) 0.9547 1.30+ 2+
Cu 7 0.38(2) 1.59(8) 0.9846 0.76 + 1+-2+

Notes: Units in parentheses are 1o' uncertainties on regression parameters.

suggest that the olivine/silicate melt partition coefficient for

C& ÷ (0.73) may be only moderately larger than that for

Cr _ (0.65) in an Fe-free system (Hanson et al., 1996). The

third line of evidence for the lack of significant Cr 2. in our

experiments is that the abundance of Cr in the silicate melt

does not vary systematically as a function of fo2- The experi-

ments that were doped with higher concentrations of Cr

have systematically higher Cr in the silicate melt, but the

abundance does not increase with decreasing fo_. A possible

explanation for the difference between our results and those

from simple-system experiments is that the presence of Fe 3+

in the silicate melt may shift the Cr3+/C& + transition to

TABLE 9. Experimentally-determined sulfide melt/silicate melt partition coefficients.

Experiment log f:/22 --logf_: Dv D o D_, DF, Dco DNi Dcu D w

Ni-Doped Experiments
Fo86-8s 2,70 -- --
Fo86-5s 2.95 -- --
Fo86-9s 3.25 -- --
Fo86-15s 3.55 -- --
Fog6-14s 3.95 -- --
Fo86-10s 4.40 -- --

Ni-Cr-Cu.Doped Experiments
KOM- I s 3.05 -- --

KOM-6s 3.25 -- 0.13(3)
KOM-15s 3.65 -- 0.39(5)
KOM-4s 4.10 -- 2.2(2)
KOM-3s 4.40 -- 7.2(3)
KOM:i0s 4.40 -- 4.8(2)
KOM-26s I 4.40 -- 4.9(2)

KOM-9s 4.55 -- 6.8(3)

Ni-Co- W-Doped Experiments
KOM-16s 3.05 -- --
KOM-20s 3.25 -- --
KOM-13s 3.95 -- 1.8(I)
KOM- 11s 4.40 6,3(5)

Ni- V-Doped Experiment*
KOM-19s 3.05 0.025(I) --
KOM-23S 3.25 0.022(1) --
KOM-22s 3.80 0.18(I) 1.1(1)
KOM-18s 4.40 1.3(1) 4.9(2)

-- 1.88(2) -- 572(7) -- --
-- 2,43(2) -- 619(5) -- --
-- 3.29(3) -- 649(15) -- --
-- 6.63(7) -- 760(30) -- --
-- 8.25(6) -- 1600(60) -- --
-- 20.1(4) -- 2160(160) -- --

-- 2.29(6) -- 540(10) 250(20) --
0.06(3) 2.,40(6) -- 550(10) 313(9) --
0.26(4) 5.0(6) -- 1100(100) 500(100) --
0.68(2) 8.4(1) -- 1430(50) 690(50) --

1.49(4) 17.6(3) -- -- 960(50) --
1.07(5) 13.3(3) -- 3600(200) 900(100) --
0.99(5) 13.4(5) -- 2400(300) 690(70) --

1.8(1) 18.9(5) -- -- 970(50) --

-- 1.53(4) 17.7(5) 51001) -- --
-- 2.72(6) 24.30) 580(30) -- --

0.30(2) 5.7(2) 62(4) 1600(100) -- --

1.09(3) 16.9(4) 164(7) 4400(400) -- 0.113(8)

-- 1.58(II) -- 410(20) -- --

0.07(I) 2.80(7) -- 550(20) -- --

0.26(I) 5.2(2) -- 1170(80) -- --
0.94(4) 15.8(7) -- 3800(400) -- --

Notes: Units in parentheses represent 1 o uncertainties of the least units cited calculated by propagating the standard
deviation of the mean.

_Reversal experiment.
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Fig. 5. Plot of log D sut"d_ M_I,/SI,,a,__&I, versus log f'sl= 2 -- log

f _22 illustrating the dependence of the sulfide melt/silicate melt

partitioning of Ni (hexagons), Cu (squares), Co (squares with plus-

ses), Fe (upside-down triangles), Cr (triangles), Mn (circles), and

V (squares with crosses) on fo_ and fs_ conditions. Error bars are

la. Where error bars are not shown, they are smaller than symbols.

more reducing conditions, as suggested by Schreiber and

Haskin (1976). It is also possible that the presence of S 2

dissolved in the silicate melt affects Cr oxidation-reduction

equilibria.

The slopes of the log D su_nde Melt/Silicate Melt versus log r 112JS2

- log f_/_ regression lines for Fe (0.68 __+0.03 vs. 1.0), Co

(0.69 _+ 0.05 vs. 1.0), Ni (0.65 __+0.04 vs. 1.0), and Cu

(0.38 _+ 0.03 vs. 0.5) are shallower than expected in Fig. 5,

demonstrating that the fo_./fs_ dependencies of their sulfide

melt/silicate melt partition coefficients are weaker than

would be predicted on the basis of their valence states. Peach

and Mathez (1993) also noted weaker than expected

foJfs: dependencies for the partitioning of Fe (0.78) and

Ni (0.60) between sulfide melt and silicate melt in experi-

ments performed at 8 kbar, 1450°C. If these slopes resulted

solely from the relationship given by Eqn. 5, it would require

that a significant percentage of each element be dissolved in

the silicate melt as a neutral species even at fo_ conditions

1 log unit below the FMQ buffer. This is highly improbable,

especially given the constancy of the olivine/silicate melt

partition coefficients for these elements over the range of

fo: conditions investigated. A second possibility is that the

ratio of the activity coefficients for these elements in sulfide

and silicate melts s,,_,t_ S.md_(TM /7M ) is variable due to the vari-

ation in the major element compositions of the coexist-

ing liquids. This should lead to curvature in the log

DS_md_ M_,,s_-,,_ r,_, vs. log f_/22 -- log f_f relationship, how-

ever, and none is evident.

Another mechanism for producing weaker than expected

foJfs_, dependencies is for some percentage of the Fe, Co,

Ni, and Cu to be bonded with S 2-, rather than O 2 , anions

in the silicate melt, as suggested for Ni by Peach and Mathez

(1993). At conditions more reducing than FMQ, S dissolves

in silicate melts as S 2- anions by displacing O 2 anions that

are bonded with metal cations such as Fe -_+ (Fincham and

Richardson, 1954; Haughton et al., 1974). This solubility

mechanism should leave some percentage of the strongly

TABLE 10. Experimentally-determined olivine/silicate melt partition coefficients.

1/2
Experiment logfs 2 -- logf_/_ D V DCr DMn DFe DCo DNi DCu D W

Ni-Doped Experiments
Fo86-Ss 2.70 -- --
Fo86-5s 2.95 -- --
Fo86-9s 3.25 -- --
Fo86-15s 3.55 -- --
Fo86-14s 3.95 -- --
Fo86-10s 4.40 -- --

Ni-Cr-Cu-Doped Experiments
KOM-Is 3.05 -- 0.642(4)
KOM-6s 3.25 -- 0.593(8)
KOM- 15s 3.65 -- 0.611(3)
KOM-4s 4.10 -- 0.657(6)
KOM-3s 4.40 -- 0.631 (2)
KOM-10s 4.40 -- 0.64(1)
KOM-26s I 4.40 -- 0.640(2)
KOM-9s 4.55 -- 0.631(2)

Ni-Co-W-Doped Experiments
KOM-16s 3.05 -- 0.58(1)
KOM-20s 3.25 -- 0.594(3)
KOM-13s 3.95 -- 0.629(6)
KOM-Ils 4.40 -- 0.656(4)

Ni-V-Doped Experiments
KOM-19s 3.05 0.096(1)
KOM-23s 3.25 0.099(1)
KOM-22s 3.80 0.159(1)
KOM-18s 4.40 0.340(1)

1.07(1) -- 7.46(19)
1.20(1) -- 7.24(7)
1.13(1) -- 6.48(16)
1.09(1) -- 7.0(3)
1.16(1) -- 7.1(3)
1.14(2) -- 4.0(3)

0.847(4) 0.972(2) -- 6.74(6) 0.096(9) --
0.760(3) 0.866(5) -- 5.74(4) 0.075(8) --
0.713(4) 0.898(5) -- 5.6(I) 0.133(7) --
0.714(4) 0.897(16) -- 6.2(2) 0.11(2) --
0.707(3) 0.954(7) -- -- 0.19(3) --
0.692(3) 0.907(8) -- 7.0(7) 0.09(I) --
0.681(2) 0.864(7) -- 6.4(6) -- --
0.681(3) 0.905(9) -- -- 0.08(I) --

0.69(I) 0.957(7) 1.81(6) 5.5(2) -- 0.016(1)
0.731(5) 0.872(4) 1.954(4) 5.7(I) -- 0.053(2)
0.717(5) 0.927(7) 1.93(2) 5.4(2) -- 0.039(2)
0.702(3) 0.916(10) 1.96(2) 7.1(6) -- 0.054(3)

0.617(4) 0.736(3) 0.877(7) -- 5.97(6) -- --
0.580(3) 0.741(3) 0.857(5) -- 5.47(8) -- --
0.595(5) 0.713(5) 0.899(7) -- 5.6(3) -- --
0_g(4) 0.707(2) 0.879(10) -- 4.5(3) -- --

Notes: Units in parentheses represent lo uncertainties calculated by propagating the standard deviation of the mean.
IReversal experiment.
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Fig. 6. Plot of log O °'''_/s_'_"'. Mr,, versus log f _,2 _ log f _']
illustrating the constancy of the olivine/silicate meh partition coef-
ficients for of Ni (hexagons), Co (squares with plusses), Fe (upside-
down triangles), Mn (circles), Cr (triangles), and Cu (squares)
with changing fo2 and fs_ conditions. The systematic increase in the
olivine/silicate melt partition coefficient for V (squares with
crosses), and possibly W, (pentagons) is attributable to changing
valence state with decreasing fo2. Error bars are la. Where error
bars are not shown, they are smaller than symbols.

chalcophile elements to bond with S z rather than 0 2-
anions in the silicate melt. If the sulfide melt/silicate melt

exchange reaction given in Eqn. 1 is modified to take this

into account, the governing reaction becomes:

Z2 S_,_
MxOrS_i"i_"eM_" + T

M S sulfide Melt Y 0_., + Zi S_,
= x z: + _ _ (6)

where Y + Z, = X for divalent cations. Following steps

similar to Eqns. 2 through 4, the expression relating

DISUlfide Melt/Silicate Meh to fo: and fs2 becomes:

log oSulfideM Melt/Silicate Melt

1

= 2-X- [(Z2 - Z,)logfs, - Ylogfo2] + C (7)

Different values of Zl can be substituted into this expres-

sion to account for various percentages of MS dissolved

in the silicate melt. Experimentally determined log

D SMUlfideMelt/SilicateMeltvalues can then be regressed against (Z2

- Zl) log fs, - Y log fo, and the slope compared with a

theoretical value. If, for example, Ni is dissolved in the

sulfide melt as Ni3S2 (Fig. 4) and the Ni 2+ dissolved in the

silicate melt is a mixture of NiO and NiS, then substituting

the correct value for Z_ into Eqn. 7 will result in a log
o Sulfide Melt/Silicate MellNi vs. (Z_-Z_) log fs2 - Y log fo: regres-

sion line with a slope of 0.17.

This approach was used to estimate that _31% of the

total Ni in the silicate melt must be bonded to S _- anions

F_Sulfide Melt/Silicate Melt values, m similarin order to explain our "-'N_

treatment of the sulfide melt/silicate melt partition coeffi-

cients for Ni determined experimentally by Peach and

Mathez (1993) results in _16% of the total Ni in their

silicate melts being present as NiS. Calculations for the Cu

and Co data, assuming that all Cu is monovalent and all Co

is divalent in both liquids, indicates that _20% of the total

Cu in the silicate melt must be Cu/S, and that _31% of the

Co must be CoS.

Although these percentages are consistent with the con-

centration of S dissolved in the silicate melts, there are two

observations that argue against this mechanism for producing

the observed fo,/fs: dependencies. The first is that the pres-

ence of sulfide species in the silicate melt at the concentra-

tions required to explain our data should produce a noticeable

decrease in olivine/silicate melt partition coefficients, and

none is observed. The second is that the low concentra-

tion of S in the silicate melts precludes this mechanism as

an explanation for the behavior of Fe. That the log

D Sulfide Melt/silicate Melt VS. log f_/a2 - log f_/f slopes for Fe,

Co, and Ni are within uncertainty of each other suggests

that a single mechanism may be responsible for all three.

Capobianco and Amelin (1994) determined metal/silicate

melt partition coefficients for Ni and Co in the CaO-MgO-

AIzO3-SiO2 system over a range of temperature and fo_ con-

ditions. Their experimental results show an fo_ dependence

for partitioning at 1300-1425°C that is most readily ex-

plained by fo=-induced changes in silicate melt structure. It

is possible that the low fo:/fs: dependencies for Fe, Co, Ni,

and Cu found in our experiments are related to similar melt

structural changes.

A comparison of the foJfs_ dependencies of the sulfide

melt/silicate melt (Fig. 5) and of the olivine/silicate melt

(Fig. 6) partitioning of V demonstrates that its behavior is

more complicated than the other elements studied. The

strong, linear increase in log Dv°)_'_"_m'_'_ r,_, with decreas-

ing foJfs_ ratio (Fig. 6) indicates that V is undergoing a

change in valence state related to changing fo2, most likely

from 4+ to 3+. This should produce a change in slope in

the V partitioning data shown in Fig. 5 (cf. Holzheid et al.,

1994; Borisov and Palme, 1995), but none is apparent. It is

TABLE11. Forsteritecontents andFeJMgexchange KD values for San Carlos
olivinecruciblesand experimentally-producedolivines.

Crucibles Olivines
Experiment Fo KD Fo KD

KOM-I s 88.7 0.31 88.7 0.3 I
KOM-6s 89.9 0.31 90,0 0.3 I
KOM-15s 91.2 0.32 91.3 0.32
KOM-4s 93.9 0.31 93.9 0.3 I
KOM-3s 96.2 0.35 96.5 0.32
KOM-10s 96.0 0.33 96.2 0.31
KOM-26s 96.2 0.31 96.3 0.31
KOM-9s 97.4 0.31 97.5 0.30

- KOM-16s 88.2 0.33 88.0 0.33
KOM-20s 89.9 0.30 90.0 0.30
KOM-13s 92.3 0.32 92.3 0.32
KOM-IIs 96.5 0.33 96.6 0.32

KOM-19s 89.2 0.31 89.5 0.31
KOM-23s 89.6 0.30 89.5 0.30
KOM-22s 91. I 0.31 91.0 0.32
KOM-18s 96.5 0.31 96.6 0.30
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Fig. 7. Plot of log DS'_ma_Mclllgilica¢,'M,qlversus log f _2 log
f _ comparing the linear relationship found in the KOM experi-
ments (open circles) with the curvature found in the experiments
performed on the Fo86 starting composition (squares). The Fo86
experiments represented by open squares are olivine saturated, while
those represented as filled squares are saturated with an olivine
+ protoenstatite assemblage. Error bars are Icr. Where error bars are
not shown, they are smaller than symbols.

probable that additional experiments are needed to better

define the nature of the relationship between log

DS,,,r,d_-M¢,,/S,...,_M.',, and log .f _'==- log .f_'_.

The systematics of sulfide melt/silicate melt partitioning

for Ni determined in the experiments performed on the Fo86

composition differ from those found in the KOM experi-

ments. Figure 7 shows that whereas the Ni data from the

komatiite experiments define a linear relationship between

log D Sulfidemel'isilicateMelland log ),._I2 log 1/2- fo2, there is

curvature in the trend defined by the Fo86 experiments. The

sulfide melt/silicate melt partition coefficients from the Fo86

experiments are larger than those from the KOM experi-

ments at high fo:lf% ratio conditions, and comparable or

smaller at lower foJfs, ratios. The simplest explanation for

this is a variation in the ratio of the activity coefficients for

Ni in silicate and sulfide melts (yn_S_"_'_'_/YN_s°_na_)with chang-

ing fo,/fs: conditions. Given that temperature and pressure

are constant in these experiments, the variation in the activity

coefficient ratio must be attributable to the compositional

changes occurring in one or both of the coexisting liquids.

The high concentrations of Ni in the sulfide melts ( I 1.2 to

58.6 wt%) could lead to a non-Henrian activity-composition

relationship, but the V-doped komatiite experiments have a

similar range in Ni ( 17.7 wt% to 56.4 wt%) and do not show

the same partitioning behavior. Therefore, it is probable that

the curvature in the Fo86 data is related to the compositional

changes occurring in the silicate melt. The most significant

variation in the silicate melt composition is a decrease in the

concentration of FcO (from 9.1 to 3.68 wt%) with decreas-

ing fo_/fs, ratio. Although an even larger variation occurs
in the FeO contents of the silicate melts from the KOM

experiments ( 11.9 to 2.94 wt% FeO), there is an important

difference between the two sets of experiments. The Fo86

experiments performed at high fo,_/fs: ratio conditions are

saturated with olivine, while the low fo21fs: ratio experi-

ments are saturated with coexisting olivine and low-Ca py-

roxene. This demonstrates that as the FeO content of the

silicate melt decreases the activity of SiO= increases until

pyroxene saturation is reached.

Variations in the sulfide capacity (C_) of the silicate melt
1/2

(C_ = [wt% S dissolved in the silicate melt] x [fo2/

.f _] ) can provide information on whether the compositional

changes in the Fo86 silicate melts are significant enough to

produce the curvature in Fig. 7. Sulfide capacity is a strong

function of the activity of the metal cations that bond with

S 2 in the silicate melt, especially Fe z+ (Fincham and Rich-

ardson, 1954; Haughton et al., 1974), and should indicate

how the activity of Ni varies in the silicate melt. In binary

systems C_ also decreases with increasing SiO2 activity, as

0 2- anions bonded solely to metal cations are replaced by

0 2- anions in tetrahedral coordination with Si 4_ (Fincham

and Richardson, 1954; Abraham et al., 1960; Abraham and

Richardson, 1960). Figure 8 shows log C_ vs. FeO content

of the silicate melt in our experiments, a relationship that

should be linear. The curvature in the Fo86 data (squares)

that is apparent in Fig. 8 is independent of any compositional

changes occurring in the sulfide melt and is, therefore, indic-

ative of significant changes in the activities of transition

metal cations and/or SiO= in the silicate melt with decreas-

ing foJfs, ratio.

Although a decrease in C_ with increasing SiO2 activity

is consistent with other experimental studies, the decrease
in Sulfide MeltlSilicate Mell •DN, ls contrary to what would be expected

on the basis of the partitioning of Ni between olivine and

silicate melt (e.g., Hart and Davis, 1978; Kinzler et al.,

1990). There is an inverse relationship between MgO con-

tent of the melt and D°_ _'_"_s_''_' M,,, but silicate melts with

different SiO: and the same MgO content do not show a

significant variations in DN°I_i''_'_s_"_'_ m_,. The filled squares

-4.0 i i i _ i i i i i

-4.5 u

o

o= II
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Fig. 8. Plot of the logarithm of the sulfide capacity of the silicate
melt (log Cs) versus FeO content comparing the linear relationship
found in the KOM experiments (open circles) with the curvature
found in the experiments performed on the Fo86 starting composition
(squares). The Fo86 experiments represented by open squares are
olivine saturated, while those represented as filled squares are satu-
rated with an olivine + protoenstatite assemblage, lo- error bars are
smaller than symbols.
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inFigs.7and8representFo86experimentsinwhichthe
silicatemeltissaturatedwithcoexistingolivineandprotoen-
statite.TheactivityofSiO:intheseexperimentsisbuffered
bythecoexistingcrystallinephases.Therelationshipbe-
tweenlogC_andFeOforthissubsetofexperimentsisnon-
linear,indicatingthattheactivityoftransitionmetalsinthe
silicatemeltvariessubstantiallyeventhoughtheactivityof
SiO2doesnot.Therefore,thevariationinNiactivitymustbe
relatedtosomeothercompositionalvariable.Oneimportant
differencebetweentheFo86andKOMsilicatemeltsisthat
theformerhaveunusuallylowCaOrelativetonaturally
occurringbasalticoruhramaficsilicatemelts,causingsome
oftheMgOtoformMgA120.,complexesinordertostabilize
A1inthealuminosilicatenetwork(e.g.,BottingaandWeill,
1972).A spectroscopicstudyof aluminosilicateglasses
alongtheSiO2-MgAI204joinfoundAIinfivefoldandsixfold
coordinationwithoxygenratherthanthetetrahedralcoordi-
nationthatcharacterizesalkalialuminosilicateglasses
(McMillanandKirkpatrick,1992),suggestingthatthepres-
enceof MgAI204complexesmayinfluencesilicatemelt
structure.Goodlinearcorrelationsexistbetweenthecalcu-
latedmolefractionofMgAI204inthesilicatemeltandlog
DSUlfide MeltfSilicateMett (r2 = 0.9047), and between the molarN,

FeO/MgAIzO4 ratio of the silicate melt and log C_ (r 2

= 0.9123) for the Fo86 experiments. Although correlation

does not demonstrate cause, it is suggestive that the presence

of a MgAI204 component in the silicate melt may influence

the activity of Ni. These results demonstrate that, in certain

cases, experiments performed in simplified analog systems

may predict more complicated partitioning behavior than is

found in natural systems.

4.2. Modeling Core Formation

In the following sections, core formation in the Earth and

in the parent body of Shergottite meteorites (Mars) is mod-

eled as a single-stage equilibrium segregation of metallic

phases from mantle silicates using the approach developed

by Rammensee and W_inke (1977) as modified by Newsom

(1985). Our experimentally determined sulfide melt/silicate
melt and olivine/silicate melt partition coefficients are com-

bined with the experimentally determined metal/silicate melt

partition coefficients of Schmidt et al. (1989) and of Drake
et al. (1989) to evaluate whether the siderophile element

abundance pattern in the mantle of either planet is consistent

with the equilibrium segregation of sulfide melt _+ metal

from an olivine-rich mantle at low pressures and tempera-

tures. To account for the differences in experimental temper-

atures among this study (1350°C) and that of Schmidt et al.

( 1989; 1300°C) and of Drake et al. ( 1989; 1260°C) partition

coefficients were calculated relative to the IW oxygen buffer

using linear equations such as those given in Table 8. No

other form of temperature correction was applied to the parti-

tion coefficients. Although phase composition will undoubt-

edly affect partitioning (e.g., Hillgren et al., 1996), our ex-

perimental results indicate that for natural mafic and ul-
tramafic silicate melts compositional effects will be minor

compared to variations related to foJfs_ conditions.

The bulk (sulfide + metal)/total-silicate partition coeffi-

cient (D m_) is given by:

Di

D m/_ = (8)
Fliq + (CS°l/Cliq)(l _ Fliq)

where D, is the (sulfide + metal)/silicate melt partition

coefficient for a given siderophile element, F_,q is the fraction

of silicate melt divided by the total fraction of silicates, and

C_<'_/CT_qis the silicate solid/silicate melt partition coefficient

for a given siderophile element. This expression is substi-

tuted into the equation:

a-I
s - (9)

D "_ + a - I

where X is the weight fraction of sulfide segregated from

the mantle to form the core, and a is the depletion factor

for a given element. A depletion factor is the ratio of the

concentrations of a siderophile element (C,) to a refractory

Iithophile element (_) in CI chondrites divided by the same

ratio in the silicate portion of a planet (a = [C, I C_]c_/[C,/

Q]M,,,a_+c,_,)- Equation 9 predicts the mass of the core that

is required to produce the observed siderophile element/

lithophile element fractionation as a function of the extent

of silicate partial melting that accompanied core formation.

Performing this calculation for a series of siderophile ele-

ments using known depletion factors and experimentally de-

termined partition coefficients produces a series of curves

relating core size to extent of silicate partial melting. If the

abundances of the siderophile elements in the mantle of a

planet can be explained by a core-forming process for which

the given partition coefficients are appropriate, all of the

curves will intersect at a point coinciding with the mass of

the core of the planet, and with the extent of silicate partial

melting that accompanied core segregation.

4.3. The Role of Sulfide in Core Formation in the

Earth

The origin of the siderophile element abundance pattern

in the upper mantle of the Earth is a long-standing problem

in geochemistry. Ringwood (1966) first noted that the abso-

lute and relative abundances of the siderophile elements can-

not be explained by the equilibrium segregation of metal

from silicate on the basis of known metal/silicate partition

coefficients. Four models have subsequently been proposed

to explain the pattern: ( 1) heterogeneous accretion, in which

a veneer of chondritic material is accreted following segrega-

tion of the core and mixed into the upper mantle (Morgan

et al., 1980; W_inke, 1981); (2) inefficient core formation,

in which some percentage of metal remains in the mantle

following segregation of the core, and is subsequently oxi-

dized (Jones and Drake, 1986); (3) equilibrium segregation

of a sulfide melt from the upper mantle (Brett, 1984); and

(4) segregation of core-forming material from a magma

ocean under extreme pressure or temperature conditions

(Murthy, 1991; Walker et al., 1993; Li and Agee, 1996).

The equilibrium sulfide segregation model was conceived

on the basis of the observations that the density of the outer

core is 10% lower than that of a pure FeNi alloy at compara-

ble conditions, requiring the presence of a light alloying

element or elements (Birch, 1961, 1964), and that sulfide

melt/silicate melt partition coefficients for siderophile ele-
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TABLE 12. Parameters used in core segregation modeling.

Depletion Factors PartitionCoefficients
V Cr Mn Fe Co Ni Cu V Cr Mn Fe Co Ni Cu

Earth
2.0 2.3 5.3 -- 12.8 14.0 12.1

Shergittite Parent Body
-- I.O 1.0 2.18 14.9 55.7 46.4

Metal/Silicate Melt
0.007 0,12 0.004 -- 71 1200 13

Sulfide Melt/Silicate Melt
0.02 0.08 0.03 -- 17 420 290

Olivine/Silicate Melt
0.34 0.61 0.71 -- 1.9 5.9 OAt

Metal�Silicate Melt
-- 0.154 0.0055 3.35 93 1565 20

Sulfide Melt�Silicate Melt
-- 4.96 1.09 14.07 140 3171 864

Olivine/Silicate Melt
-- 0.61 0.71 0.90 1.9 5.9 0.11

Low-Ca pyroxene/Silicate Melt
-- 0.59 -- -- --

High-Ca pyroxene/Silicate Melt
-- 0.25 -- -- --

ments tend to be smaller than metal/silicate melt partition

coefficients at comparable conditions (Brett, 1984). Brett

(1984) proposed that core formation took place through the

segregation of sulfide melt (23 wt% S; 8 wt% O) from a

solid mantle. According to this model the siderophile ele-

ment abundance pattern of the mantle was established by

equilibrium partitioning between silicate minerals and sul-

fide melt at low pressures and temperatures, as the melt

migrated through the shallow mantle via porous flow. At

greater depth, the melts aggregated to form larger, faster-

moving bodies that did not maintain chemical equilibrium

with the surrounding mantle. The S content of the melt de-

creased through an unspecified reaction in the deep mantle

before the melt was added to the core.

Brett (1984) used partition coefficients from several dif-

ferent low-pressure experimental studies to test the equilib-

rium sulfide segregation model against upper mantle sidero-

phile element abundances. These partition coefficients were

determined from experiments in which the fo, lfs_ conditions
were not controlled. Here we revisit the model of Brett

(1984) and test it using foJfs_-sensitive partition coeffi-

cients. The depletion factors used in our modeling were cal-

culated using the primitive mantle abundances of Jagoutz et

al. (1979) and the C1 abundances of Anders and Grevesse

(1989), and are normalized to the refractory lithophile ele-

ment La (Table 12). Brett (1984) proposed that upper man-

tle conditions during core formation were an fs: equivalent

to the FeFeS sulfur buffer (log fs._ = -4.10 at 1350°C), and

an fo2 value equivalent to the IW oxygen buffer (log fo2

= -10.20 at 1350°C). These conditions correspond to a log

f1/22 -- log f_ value of 3.05.

The results from our modeling are presented in Fig. 9.

Because of the incompatible behavior of V, Cr, and Mn with

respect to sulfide melt at these conditions, their observed

fractionation from La in the upper mantle of the Earth could

only be produced by formation of an unreasonably large core

(91% to 99% of the Earth's mass). This does not invalidate

the sulfide model, however, because it has been argued that

the depletion pattern for these elements is related to their

relative volatilities and, therefore, was established by accre-

tionary processes rather than core formation (Drake et al.,

1989). The sulfide model is fairly successful for explaining

the Co abundance of the mantle requiring a core that com-

prises 41 wt% of the Earth and an extent of silicate partial

melting of 100% accompanying core formation. The cross-

over point for Ni and Cu at these conditions, however, only

allows for a core that is 3.6% of the mass of the Earth, with

core formation accompanied by 96% silicate partial melting.

This core is too small by an order of magnitude. The lack

of agreement among Ni, Co, and Cu precludes equilibrium

segregation of a sulfide melt at low temperatures and pres-

sures as the appropriate model to explain the siderophile

element abundance pattern of the mantle of the Earth. Choos-

'°°/l .... \ ..... III
f Each

80 Equilibrium Sulfide
_°/ I Segregation I / LI

1 /!l_. 4o

_ 2o
_i (_0 CrJ_n

0 / , _ .... I .... I I II
0 20 40 60 80 1O0

Core Mass (Wt%)

Fig. 9. Plot of core mass versus extent of silicate partial melting
that accompanied core segregation showing the results of equilibrium
sulfide segregation modeling for V, Cr, Mn, Co, Ni, and Cu deple-
tions in the upper mantle of the Earth. Core formation fo/fs2 condi-

tions tested in this model are log fo, = -10.2 and log fs_ = -4.1
at 1350°C.
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ingfo,lfs_, conditions other than those suggested by Brett

(1984) does not improve the modeling result, because the

f)21fs, dependence of log D_I lnJ_M_"_s_l_c_'eM_ltand log
DSulfide Melt/Silicate Meltco are nearly identical (Table 8). Equilibra-

tion of a core-forming sulfide melt with mantle silicates at

low pressures and temperatures cannot explain the mantle's

nearly chondritic Ni/Co ratio at any reasonable set of

fo_/ fs2 conditions.

An alternative to segregation of a single sulfide phase to

form the core is segregation of a mixture of sulfide melt and

metal, accompanied by partial melting of the silicate mantle

(Jones and Drake, 1986; Newsom, 1990). This process

would also have occurred at low temperatures. We tested a

model of segregation of a mixture consisting of 27 wt%

sulfide melt (containing 35 wt% S) and 73 wt% metal. This

combination will produce an outer core with a S content of

10 wt%, in agreement with current geophysical estimates

(e.g., Poirier, I994). The results from this type of model

are similar to those for extraction of sulfide alone. A large

core (88% to 100% of the mass of the Earth) is required to

explain the abundances of V, Cr, and Mn, while a very small

core (5.2% of the Earth mass) is needed to explain Ni and

Cu. Once again the abundance of Co in the upper mantle of

the Earth can be reasonably accounted for (a 29 wt% core),

assuming no partial melting of the silicate. This result agrees

with similar calculations performed by Jones and Drake

(1986) and by Newsom (1990). Both of these studies con-

cluded that some percentage of the segregating material must

be trapped in the mantle in order for this type of core forma-

tion to be consistent with known siderophile element abun-

dances.

Our experimentally determined partition coefficients are

not appropriate for testing the possibility that sulfide melt

segregated from a molten upper mantle at extreme pressure-

temperature conditions to form the core. Experimental stud-

ies demonstrate that sulfide melt/silicate melt partition coef-

ficients for some moderately siderophile elements decrease

with increasing temperature (Walker et al., 1993) and pres-

sure (Li and Agee, 1996). Further, the experimental results

of Li and Agee (1996) suggest a convergence of the partition

coefficients for Ni and Co with increasing pressure. Although

these experimental studies indicate that equilibrium sulfide

melt/silicate melt partitioning may have played a role in

forming the core of the Earth, neither provides a completely

satisfactory resolution to the siderophile element overabun-

dance problem. The experimentally determined partition co-

efficients of Walker et al. (1993) predict mantle Ge/Ni and

P/Ni ratios that are too high, and the silicate (34.6 wt%

SIO2; 48.0 wt% MgO) and sulfide (29.7 wt% S) melts pro-

duced in the experiments of Li and Agee (1996) are poor

analogs for the mantle (45.2 wt% SIO2; 38.3 wt% MgO)

and core (<-12 wt% S), of the Earth, respectively.

4.4. Size and Composition of the Martian Core

The Shergottites-Nahklites-Chassigny (SNC) meteorites

are a group of basaltic achondrites whose major and trace

element compositions (Stolper, 1979; Stolper and McSween,

1979) and young crystallization ages (McSween et al., 1979;

Walker et al., 1979) indicate that their parent body was one

of the terrestrial planets rather than an asteroid. A compari-

son of Viking measurements of the Martian atmosphere with

the noble gases trapped in Shergottite impact melt glasses

provides the strongest evidence that the Shergottite parent

body (SPB) is Mars (Bogard and Johnson, 1983). The abun-

dances of siderophile elements in these meteorites, therefore,

provide clues to the processes involved in the formation of

the Martian core.

The size and composition of the Martian core is poorly

constrained by geophysical measurements due to the large
uncertainties associated with the planet's moment of inertia

(Bills, 1996). Alternative approaches to determining the size

and composition of the Martian core can be broadly divided

into cosmochemical and geochemical models. Cosmochemi-

cal estimates rely on determinations of the mean density of
Mars (Bills and Ferrari, 1978), theoretical calculations of

the temperatures at which equilibrium solids condense from

a gas of solar composition (Grossman, 1972; Lewis, 1972),

compositional data from the Viking and Mars 5 missions

(Owen et al., 1977; Surkov, 1977), and the compositions of

various classes of chondritic meteorites. Geochemical ap-

proaches are based, at least in part, on chemical analyses of
SNC meteorites.

The least complicated of the cosmochemical approaches

assumes that condensation of equilibrium solids from a gas

of solar composition took place in a nebula with an adiabatic

pressure-temperature gradient. Mars is assumed to have ac-
creted from a restricted annular zone with a lower mean

temperature than that from which the Earth accreted (Goet-

tel, 1983). This model predicts a relatively massive core

(26.4% of the mass of Mars) that is moderately rich in S

(17.6 wt%) (Table 13). A modified equilibrium condensa-

tion model in which feeding zones overlap predicts a similar

core mass (25.7%) and a higher S content (33.8 wt%;

Weidenschilling, 1976). The high-S core compositions pre-

dicted by these models result from the assumption that Mars

accreted from material in a Iower temperature portion of the

nebula and, thus, contains a higher proportion of volatile
elements and oxidized Fe than the Earth. A second class of

cosmochemical model uses mixtures of chondritic meteorites

to produce a bulk composition that is consistent with the

existing data on Mars (Anderson, 1972; Anders and Owen,

1977; Morgan and Anders, 1979; Ringwood, 1981). AII

metal and S is then partitioned into the core, These models

predict a range of core masses (11.9 to 19.0 wt%) and S

contents (3.5 to 18.6 wt%) (Table 13), depending the as-

sumptions that go into the model and the data used to con-

strain it.

Two groups have used the geochemical approach to esti-

mate the size and composition of the Martian core. They

derived similar estimates for the siderophile element abun-

dance pattern of the SPB mantle on the basis of SNC meteor-

ite compositions. Both groups concluded that the SPB mantle

is characterized by a Co/Ni ratio that is _5-10 times chon-

dritic, and pronounced depletions in elements with chalco-

phile affinities. They used these compositional characteris-

tics to support the existence of a high-S core. Wfinke and

Dreibus (1988) assumed that Mars contains Fe and Ni in

chondritic proportions relative to Si and estimated a S abun-

dance on the basis of their heterogeneous accretion model.



ConstraintsoncoreformationintheEarthandMars

TABLE13.ComparisonofmodelMartiancorecompositions.
I 2 3 4 5 6 7

Mantle + crust

Mg/(Mg+Fe) 0.79 0.77 0.67 0.77 0.66 0.75 0.72
Relative Mass 73.6 74.3 88.1 81.0 81.8 78.3 80.8

Core

Fe 76.2 60.4 72.0 88.1 63.7 77.8 88.1

Ni 6.2 5.8 9.3 8.0 8.2 8.0 1I. 1

Co -- -- -- 0.4 -- -- 0.3

Cu ...... 0.1

S 17.6 33.8 18.6 3.5 9.3 14.2 0.4

O .... 18.7 -- --

Relative Mass 26.4 25.7 11.9 19.0 18.2 21,7 19.2

1: Equilibrium condensation from nebula of solar composition assuming adiabatic pressure-temperature

gradient (Goettel, 1983);

2: Equilibrium condensation with modified accretion zones (Weidenschillin8, 1972);

3: Mixture of chondritic meteorites constrained by mean density and moment of inertia (Anderson, 1972);

4: Seven-component chondrite mixture constrained by Viking and Mars 5 isotopic and compositional data

(Morgan and Anders, 1979);

5: 30% Orgueil CI chondrite + 70% high temperature component mixture (Ringwood, 1981);

6: Fe mass balance constrained by SNC estimate of mantle FeO content (W_inke and Dreibus, 1988);

7: This study.
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The compositions of SNC meteorites were used to determine

the FeO content of the Martian mantle, and the Fe in their

bulk composition was mass balanced between the SPB man-

tle and core. They partitioned all Ni and S into the core.

Their model predicts a core mass of 2[.7% and a S content

of 14.2 wt% (Table 13). Treiman et al. (1986) used analyses

of SNC meteorites to estimate the geochemical characteris-

tics of the SPB mantle and discussed the broad constraints

placed on core formation by the relative abundances of Ni

and Co. Treiman et al. (1987) modeled the SPB mantle

abundances of Ni, Co, W, P, and Mo to constrain core forma-

tion. They used a model in which siderophile elements were

partitioned among four phases (solid metal, liquid metal,

solid silicate, liquid silicate) without normalizing their con-

centrations to that of a refractory lithophile element. Treiman

et al. (1987) estimated that the ambient fo2 conditions during

SPB core formation were I log unit below the IW buffer,

and predicted a large core (25 to 35 wt%) composed of a

50:50 mixture of metal and S-rich metallic liquid ( 12.5 wt%

S in the core).

An improved estimate for the size and composition of the

Martian core can be obtained by combining the Fe mass

balance approach of W_nke and Dreibus (1988) with a trace

element model similar to that used by Treiman et al. (1987).

A new constraint is provided by our experimental determina-

tion of the partitioning behavior of Cu, a strongly chalcophile

element whose abundance in the SPB mantle should be diag-

nostic of the S content of the core. Depletion factors were

calculated for the moderately siderophile elements using the

SPB mantle abundance estimates of Laul et al. (1986) (La)

and of Wanke and Dreibus (1988) (Cr, Mn, Ni, Co, Cu).

The metal-to-sulfide ratio of the core-forming material and

the ambient fo2/fs_ conditions during core formation were

taken as independent variables in the model to determine

whether a reasonable match to the inferred mantle sidero-

phile element depletions could be achieved.

First, broad constraints were placed on Martian core for-

mation by modeling the abundances of Co, Ni, and Cu at the

most oxidizing conditions compatible with metal segregation

(the IW buffer). The log fs2 conditions were arbitrarily set

at -2.0 (at 1350°C) as a starting point. The best match to

the SPB mantle depletions for Co, Ni, and Cu was achieved
with a core that is between 20.2 and 25.9% of the mass of

Mars, containing only a small amount of S (_0.4 wt%).

The extent of silicate partial melting accompanying core

formation inferred from this model is relatively low (0.2 to

4.9 wt%). Models involving the segregation of S-rich mate-

rial (14 to 35 wt% S) permit only a small core (5 to 9 wt%)

and require large extents of silicate partial melting (60 to

78%.) in order to match the Ni and Cu depletions. These

models do not reproduce the Co depletion. Varying the ambi-

ent fo2/fs: conditions does not significantly affect this result.
The preliminary estimates for the size and composition

of the Martian core derived from modeling trace element

depletions were refined by assuming a chondritic Fe/La ratio

for Mars and mass-balancing Fe between mantle and core

using foJfsfdependent partition coefficients. Mantle/core

partition coefficients were calculated for each of the elements

assumed to be in the core (Fe, Ni, Co, and Cu) using Eqn.

8. The mantle/core partition coefficient for Fe was modified

by scaling the olivine/core partition coefficient to account

for the presence of orthopyroxene and clinopyroxene using

the SPB mantle mode of Longhi et al. (1992) and olivine/

pyroxene partition coefficients determined from a Kilbourne

Hole spinel lherzolite xenolith (Gaetani, 1996). The mantle/

core partition coefficients were then used to calculate the
concentration of each of the elements in the Martian core

from their mantle abundance. When the core composition

summed to less than 100%, it was recalculated at a lower

fo2 value until the appropriate core composition was obtained

(Fig. 10; Table 13). The fo2 conditions during core forma-

tion indicated by these calculations correspond to 0.53 log

units below the IW buffer, with a core representing between
16.7% and 21.6% of the mass of Mars. The extent of silicate

partial melting accompanying core formation implied by this

model is 1.7 to 6.9%. Due to the low S content of the segre-
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Fig. 10. Plot of core mass versus extent of silicate partial melting
that accompanied segregation of a low-S core showing the modeling
results for Co, Ni, and Cu depletions in the Martian mantle. Core

formation f_:/fs: conditions tested in this model are log fi_
= -10.73 and log fs, = -2.0 at 1350°C.

gating material, the calculations are insensitive to assump-

tions about fs., conditions.

Although the fo,_/fs,, dependence of the partitioning of W
between sulfide melt and silicate melt could not be deter-

mined from our experiments, there is enough partitioning

data available to perform a first-order test of whether the

depletion of W in the SPB mantle is consistent with our

proposed core formation model. Using the fo2-dependent

metal/silicate melt partition coefficient for W of Schmidt et

al. (1989) and our determination of the sulfide melt/silicate

melt partition coefficient near IW, we found that the W
abundance in the SPB mantle is consistent with the core

mass inferred from the other elements if the percentage of

sulfide in the segregating material is increased slightly to

_5% ( 1.8% S in the core) and the extent of silicate partial

melting is increased to -30 wt%.

There is no estimate for the V depletion of the SPB mantle

and the depletion factors for Cr and Mn are both 1, so that

their abundances cannot be modeled in the same way as Ni,

Co, Cu, and W. However, the lack of any significant deple-

tion for these elements in the SPB mantle can be used to tesl

our proposed core formation model if Eqn. 9 is rearranged to

solve for the depletion factor using the mean core size (19.2

wt%) and melt fraction (4.3%.) obtained from our modeling

results for Fe, Co, Ni, and Cu. The depletion factors for Cr

and Mn calculated in this way are 1.08 and 1.01, respec-

tively, consistent with the abundances inferred from SNC

meteorites. Models involving segregation of sulfide-rich ma-

terial (50-100% sulfide melt) produce significant depletions

in both Cr (a 1.97-2.88) and Mn (a = 1.18-1.36) in

the SPB mantle. Therefore, our modeling results demonstrate

that the segregation of metal-rich, S-poor material at low

pressures and temperatures to form the Martian core is con-

sistent with existing estimates for the concentrations of seven

of the moderately siderophile elements in the SPB mantle.

Table 13, which is modified after Table 1 of Longhi et

al. (1992), is a comparison of the SPB core composition

calculated in this study with previous estimates. Core compo-

sitions 1-5 are based on cosmochemical models, while com-

position 6 is derived from Fe mass-balance. All of the ex-

isting models predict a Martian core with a significantly

higher S content than our composition. The low S content

of the Martian core implied by our modeling results has

important implications for our understanding of the internal

structure of Mars and for its early evolution. First, thermal

models demonstrate that a core consisting dominantly of

FeNi metal in a planet the size and age of Mars would be

solid (Schubert and Spohn, 1990). A solid core is consistent

with the lack of any significant magnetic field associated

with Mars (Russell, 1978). The low S content of the core

also implies that Mars is strongly depleted in S. With the

exception of Morgan and Anders (1979), whose model core

composition contains only 3.5 wt% S, all of the previous

studies concluded that Mars is enriched with respect to S

relative to the Earth. If the solubility of S in a silicate melt

is taken to be 1500 ppm, the S/La ratio of Mars would be

only 0.0065 times chondritic. This contrasts sharply with the

elevated Martian volatile abundances inferred from studies

of SNC meteorites (Dreibus and W_inke, 1987), but is con-

sistent with the noble gas depletions observed in the Martian

atmosphere (Anders and Owen, 1977; Owen et al., 1977).

There are two possible explanations for a depletion in S.

The first is that S was efficiently outgassed from the Martian

interior during the early evolution of the planet. Once out-

gassed, S may have escaped from Mars along with the noble

gases during the loss of a primordial atmosphere (Dreibus

and W_inke, 1985). A second possibility is that the behavior

of S during condensation of the solar nebula and accretion

of the terrestrial planets is more complicated than currently

assumed.
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